INTUITIONISTIC FUZZY S- NORMAL AND POLYNOMIAL MATRICES

*R.Indira, **V.Subharani
*(Assistant Professor(Sr.Gr),Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu) **(Research Scholar,Department of Mathematics, Anna CEG campus, Chennai-600025, Tamilnadu)

ABSTRACT

In this paper we introduced the concept of intuitionistic fuzzy s-nowmal and intuitionistic fuzzy snormal polynomial matrices and study some of its properties.

KEYWORDS: Intuitionistic fuzzy s-normal matrix, Intuitionistic fuzzy s-normal polynomial matrix.

I.INTRODUCTION

The fuzzy sets were first introduced by Zadeh[4]. Later, Young Bim and Lee[3] defined the concept of intutionistic fuzzy matrices and Pal, Khan and Shaymal[2] developed some results on intutionistic fuzzy matrices. Here, we made a study about intutionistic fuzzy s-normal and intutionistic fuzzy s-normal polynomial matrices as an extension of s-normal and unitary polynomial matrices discussed in [1] for complex matrices. An intutionistic fuzzy matrix A of order $\mathrm{n} \times \mathrm{n}$ is defined as $\mathrm{A}=\left[x_{i j},\left\langle a_{i j \mu}, a_{i j \lambda}\right\rangle\right]$, where $a_{i j \mu}$ is the membership value and $a_{i j \lambda}$ is the non membership value of element $x_{i j}$ in A, which maintain the condition that $0 \leq a_{i j \mu}+$ $a_{i j \lambda} \leq 1$. $\mathrm{i}, \mathrm{j}=1$ to n and $a_{i j \mu}, a_{i j \lambda} \in \mathrm{E}$. For simplicity, we write A as $\mathrm{A}=\left[a_{i j}\right]$, where $a_{i j}=$ $\left\langle a_{i j n+}, a_{i j \lambda}\right\rangle$.For any two elements $\mathrm{a}=\left\langle a_{j \mu \mu}, a_{i j \lambda}\right\rangle, \mathrm{b}=\left\langle b_{i j \mu}, b_{i j \lambda}\right\rangle$ of a matrix $\mathrm{A} \in F^{n \times n}$ (set of all intutionistic fuzzy matrices of order $\mathrm{n} \times \mathrm{n}$),
$\mathrm{a}+\mathrm{b}=\left\langle\max \left\{a_{i j \mu}, b_{i j \mu}\right\}, \min \left\{a_{i j \lambda}, b_{i j \lambda}\right\}\right\rangle$ and a.b $=\left\langle\min \left\{a_{i j \mu}, b_{i j \mu}\right\}, \max \left\{a_{i j \lambda}, b_{i j \lambda}\right\}\right\rangle[2]$.
For any matrix $\mathrm{A}=\left[a_{i j}\right] \in \mathrm{F}^{\text {nx }}$, the secondary transpose of A is denoted by A^{S} and is defined as $\mathrm{A}^{\mathrm{S}}=\left\langle a_{\mathrm{n}-\mathrm{j}+1, \mathrm{n}-\mathrm{i}+1}\right\rangle$. A matrix $\mathrm{I}_{\mathrm{n}} \in \mathrm{F}^{\mathrm{n} \times \mathrm{n}}$ is the identity matrix of order n , whose diagonal entries are all either $\langle 1,0\rangle$ or $\langle 0,1\rangle$ and all other elements are $\langle 0,0\rangle$. An intutionistic fuzzy polynomial matrix is a matrix whose elements are polynomials. For example,

$$
\mathrm{A}(\lambda)=\left[\begin{array}{ll}
\langle 0.2,0.4\rangle \lambda+\langle 0.3,0.1\rangle & \langle 0.5,0.4\rangle \lambda+\langle 0.3,0.2\rangle \\
\langle 0.3,0.4\rangle \lambda+\langle 0.2,0.3\rangle & \langle 0.2,0.8\rangle \lambda+\langle 0.5,0.2\rangle
\end{array}\right]
$$

is a 2×2 intutionistic fuzzy polynomial matrix.

II. INTUITIONISTIC FUZZY S-NORMAL MATRICES

In this section, we give the definition of intuitionistic fuzzy s-normal and intuitionistic fuzzy s-unitary matrices and discussed its algebraic properties.

Definition:2.1

A matrix $\mathrm{A} \in \mathrm{F}^{\mathrm{n} \times \mathrm{n}}$ is said to be s-normal if $\mathrm{AA}^{\mathrm{S}}=\mathrm{A}^{\mathrm{S}} \mathrm{A}$.

Example:2.2

Let $A=\left[\begin{array}{cc}\langle 0.2,0.3\rangle & \langle 0.1,0.4\rangle \\ \langle 0,0.4\rangle & \langle 0.2,0.2\rangle\end{array}\right]$,
$\mathrm{AA}^{\mathrm{S}}=\left[\begin{array}{cc}\langle 0.2,0.3\rangle & \langle 0.1,0.4\rangle \\ \langle 0,0.4\rangle & \langle 0.2,0.2\rangle\end{array}\right]=\mathrm{A}^{\mathrm{S}} \mathrm{A}$, then A is an intuitionistic fuzzy s-normal matrix.

Theorem: 2.3

The following statements are equivalent:
(i) A is an intuitionistic fuzzy s-normal matrix.
(ii) A^{S} is an intuitionistic fuzzy s-normal matrix.
(iii) hA is an intuitionistic fuzzy s-normal matrix where $\mathrm{h} \in \mathrm{F}$.

Proof:

(i) \Leftrightarrow (ii):

A is an intuitionistic fuzzy s-normal

$\Leftrightarrow\left(A A^{S}\right)^{s}=\left(A^{S} A\right)^{s}$
$\Leftrightarrow\left(A^{S}\right)^{S} A^{S}=$

A^{S} is an intuitionistic fuzzy s-normal matrix.
(i) \Leftrightarrow (iii):
A is an inferitionistic fuzzy s-normal $\Leftrightarrow A A^{s}=A^{s} A$.

$$
\Leftrightarrow h^{2} \mathrm{AA}^{\mathrm{S}}=\mathrm{h}^{2} \mathrm{~A}^{\mathrm{S}} \mathrm{~A} .
$$

$(h \mathrm{~A})(\mathrm{h} \mathrm{A})^{\mathrm{S}}=(\mathrm{h} \mathrm{A})^{\mathrm{S}}(\mathrm{h} \mathrm{A})$.
$\Leftrightarrow \mathrm{hA}$ is an intuitionistic fuzzy s-normal matrix.

Theorem:2.4

If A, B are intuitionistic fuzzy s-normal matrices and $A B^{S}=B^{S} A$ and

Proof:

Since A and B are intuitionistic fuzzy s-normal matrices.
We have $A^{S}=A^{S} A$ and $B B^{S}=B^{S} B$.

$$
\begin{aligned}
(A+B)(A+B)^{S} & =A A^{S}+B B^{S}+A B^{S}+B A^{S} \\
& =A^{S} A+B^{S} B+B^{S} A+A^{S} B=(A+B)^{S}(A+B)
\end{aligned}
$$

Hence $\mathrm{A}+\mathrm{B}$ is an intuitionistic fuzzy s-normal matrix.

Theorem :2.5

If A, B are intuitionistic s-normal matrices and $\mathrm{AB}=\mathrm{BA}$, then AB is also an intuitionistic fuzzy s-normal matrix.

Proof:

We have to prove $[A B][A B]^{S}=[A B]^{S}[A B]$

$$
\begin{aligned}
\mathrm{AB}[\mathrm{AB}]^{\mathrm{S}}= & \mathrm{AB} \mathrm{~A} \\
& \mathrm{~S}^{\mathrm{S}}=\mathrm{AA}^{\mathrm{S}} \mathrm{BB}^{\mathrm{S}}=\mathrm{AA}^{\mathrm{S}} \mathrm{~B}^{\mathrm{S}} \mathrm{~B}=[\mathrm{BA}]^{\mathrm{S}}[\mathrm{AB}] \\
& =[\mathrm{AB}]^{\mathrm{S}}[\mathrm{AB}] .
\end{aligned}
$$

Hence $A B$ is an intuitionistic fuzzy s-normal matrix.

Definition :2.6

A matrix $\mathrm{A} \in \mathrm{F}^{\mathrm{n} \times \mathrm{n}}$ is said to be s-unitary $f \mathrm{AA}^{\mathrm{S}}=\mathrm{A}^{\mathrm{S}} \mathrm{A}=I_{n}$. If it satisfies the condition then the possibility of A is a kind of a permutation matrix.

Theorem:2.7

The following staments are equivalent:
(i) A is an intuitionistic fuzzy s-unitary matrix.
(ii) A^{S} is an intuitionistic fuzzy s- unitary matrix
(iii) hA is an intuitionistic fuzzy s-unitary matrix where $h \in F$.

Proof:

The proof is similar to that of theorem 2.3.

Theorem:2.8
If A and B are intuitionistic fuzzy s-unitary matrices, then $A B$ is an intuitionistic fuzzy sunitary matrix.

Proof:

A is intuitionistic fuzzy s- unitary then $\mathrm{AA}^{\mathrm{S}}=\mathrm{A}^{\mathrm{S}} \mathrm{A}=I_{n}$.
B is intuitionistic fuzzy s- unitary then $\mathrm{BB}^{\mathrm{S}}=\mathrm{B}^{\mathrm{S}} \mathrm{B}=I_{n}$.
$(\mathrm{AB})(\mathrm{AB})^{\mathrm{S}}=\mathrm{AB} \mathrm{B}^{\mathrm{S}} \mathrm{A}^{\mathrm{S}}=\mathrm{AB} \mathrm{B}^{\mathrm{S}} \mathrm{A}^{\mathrm{S}}=\mathrm{A} \mathrm{A}^{\mathrm{S}}=I_{n}$.
$(\mathrm{AB})^{\mathrm{S}}(\mathrm{AB})=\mathrm{B}^{\mathrm{S}} \mathrm{A}^{\mathrm{S}} \mathrm{AB}=\mathrm{B}^{\mathrm{S}} \mathrm{A}^{\mathrm{S}} \mathrm{AB}=\mathrm{B}^{\mathrm{S}} \mathrm{B}=I_{n}$.
Hence $(\mathrm{AB})(\mathrm{AB})^{\mathrm{S}}=(\mathrm{AB})^{\mathrm{S}}(\mathrm{AB})=I_{n}$, and AB is an intuitionistic fuzzy s-unitary matrix.

Theorem:2.9

If A and B are intuitionistic fuzzy s-unitary matrices, then BA is an intuitionistic fuzzy unitary matrix.

Proof:

Since A and B are intuitionistic fuzzy s- unitary matrix, then

$$
\mathrm{A} \mathrm{~A}^{\mathrm{S}}=\mathrm{A}^{\mathrm{S}} \mathrm{~A}=I_{n} \quad \text { and } \quad \mathrm{B} \mathrm{~B}^{\mathrm{S}}=\mathrm{B}^{\mathrm{S}} \mathrm{~B}=I_{n} .
$$

From the above two equations, we have

$$
\begin{aligned}
&{A A^{S} B B^{S}=} A^{S} A B^{S} B=I_{n} \\
& \Rightarrow B B^{S}=A^{S} A=I_{n} \\
& \Rightarrow B A A^{S} B^{S}=A^{S} B^{S} B A=I_{n} \\
& \Rightarrow B A(B A)^{S}=(B A)^{S} B A=I_{n} . \\
& \Rightarrow B A \text { is an intuitionistic fuzzy }
\end{aligned}
$$

III. INTUITIONISTIC FUZZY S-NORMAL POLYNOMUALMATRICES

In this section we have given the definition of the intuitionistic fuzzy s-normal and sunitary polynomial matrices and some of its basic algebraic properties are studied which are analogous to that of on s-normal and unitary polynomial matrices [1].

Definition:3.1

A intritionstic fuzzy s-nomal polynonal matrix is a polynomial matrix whose coefficient matrices are intuitionistic fuzzy s-normal matrices.

Example :3.2

Let $\mathrm{A}(\lambda)$ be an intuitionistic fuzzy s-normal polynomial matrix.

$$
\begin{aligned}
& \mathrm{A}(\lambda)=\left[\begin{array}{cc}
\langle 0.2,0.3\rangle \lambda+\langle 0.1,0.1\rangle & \langle 0.1,0.4\rangle \lambda+\langle 0.2,0.2\rangle \\
\langle 0,0.4\rangle \lambda+\langle 0,2,0.3\rangle & \langle 0.2,0.2\rangle \lambda+\langle 0.1,0.2\rangle
\end{array}\right] \\
&=\lambda\left[\begin{array}{ll}
\langle 0.2,0.3\rangle & \langle 0.1,0.4\rangle \\
\langle 0,0.4\rangle & \langle 0.2,0.2\rangle
\end{array}\right]+\left[\begin{array}{l}
\langle 0.1,0.1\rangle \\
\langle 0.2,0.3\rangle
\end{array}\langle 0.2,0.2\rangle\right. \\
&=\mathrm{A}_{1} \lambda+\mathrm{A}_{0} \text { where } \mathrm{A}_{0}, \mathrm{~A}_{1} \text { are intuitionistic fuzzy s-normal matrices. }
\end{aligned}
$$

Theorem:3.3

The following statements are equivalent:
(i) $\mathrm{A}(\lambda)$ is an intuitionistic fuzzy s-normal polynomial matrix.
(ii) $\mathrm{A}^{\mathrm{S}}(\lambda)$ is an intuitionistic fuzzy s-normal polynomial matrix.
(iii) $\mathrm{hA}(\lambda)$ is an intuitionistic fuzzy s-normal polynomial matrix, where $\mathrm{h} \in \mathrm{F}$.

Proof:

The proof is similar lines to that of theorem 2.3.

Theorem:3.4

If $\mathrm{A}(\lambda), \mathrm{B}(\lambda)$ are intuitionistic fuzzy s-normal polynomial matrices and
$B^{S}(\lambda)=B^{S}(\lambda) A(\lambda)$ and $B(\lambda) A^{S}(\lambda)=A^{S}(\lambda) B(\lambda)$, then $A(\lambda)+B(\lambda)$ is an intuitionistic fuzzy s-normal polynomial matrix.

Proof:

The proof is similar lines to that of theorem 2.4.

Theorem :3.5

If $A(\lambda), B(\lambda)$ are intuitionistic fuzzy s-nomal polynomial natrices and $A(\lambda) B(\lambda)=$ $\mathrm{B}(\lambda) \mathrm{A}(\lambda)$, then $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is also an intuitionistic fuzzy s-normal polynomial matrix.

Proof :

Let $\mathrm{A}(\lambda)=\mathrm{A}_{0}+\mathrm{A}_{1} \lambda+\ldots+\mathrm{A}_{\mathrm{n}} \lambda^{\mathrm{n}}$ and $\mathrm{B}(\lambda)=\mathrm{B}_{0}+\mathrm{B} \lambda+\ldots+\mathrm{B}_{\mathrm{n}} \lambda^{\mathrm{n}}$ be intuitionistic fuzzy polynomial s-normal matrices, $A_{0}, A_{1} \ldots A_{n}$ and B_{0}, B_{1}, B_{n} are intuitionistic fuzzy s-normal matrices. Also giye
$\mathrm{A}(\lambda) \mathrm{B}(\lambda)=\mathrm{B}(\lambda) \mathrm{A}(\lambda)$

Here each coefficient of λ and constants terms are equal.
(i.e)

$\mathrm{A}_{0} \mathrm{~B}_{1}+\mathrm{A}_{1} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{1}+\mathrm{B}_{1} \mathrm{~A}_{0} \Rightarrow \mathrm{~A}_{0} \mathrm{~B}_{1}=\mathrm{B}_{0} \mathrm{~A}_{1} \quad$ and $\mathrm{A}_{1} \mathrm{~B}_{0}=\mathrm{B}_{1} \mathrm{~A}_{0} \ldots$.

$$
\mathrm{A}_{0} \mathrm{~B}_{\mathrm{n}}+\mathrm{A}_{1} \mathrm{~B}_{\mathrm{n}-1}+\ldots+\mathrm{A}_{\mathrm{n}} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{\mathrm{n}}+\mathrm{B}_{1} \mathrm{~A}_{\mathrm{n}-1}+\ldots+\mathrm{B}_{\mathrm{n}} \mathrm{~A}_{0}
$$

$$
\Rightarrow \quad A_{n} B_{0}=B_{0} A_{n}, A_{1} B_{n-1}=B_{1} A_{n-1}, \ldots, A_{0} B_{n}=B_{n} A_{0}
$$

Now we have to prove $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is an intuitionistic fuzzy s-normal.

$$
\begin{aligned}
\mathrm{A}(\lambda) \mathrm{B}(\lambda) & {[\mathrm{A}(\lambda) \mathrm{B}(\lambda)]^{\mathrm{S}}=\mathrm{A}(\lambda) \mathrm{B}(\lambda) \mathrm{A}^{\mathrm{S}}(\lambda) \mathrm{B}^{\mathrm{S}}(\lambda)=\mathrm{A}(\lambda) \mathrm{A}^{\mathrm{S}}(\lambda) \mathrm{B}(\lambda) \mathrm{B}^{\mathrm{S}}(\lambda) } \\
& =\mathrm{A}(\lambda) \mathrm{A}^{\mathrm{S}}(\lambda) \mathrm{B}^{\mathrm{S}}(\lambda) \mathrm{B}(\lambda)=[\mathrm{B}(\lambda) \mathrm{A}(\lambda)]^{\mathrm{S}}[\mathrm{~A}(\lambda) \mathrm{B}(\lambda)]=[\mathrm{A}(\lambda) \mathrm{B}(\lambda)]^{\mathrm{S}}[\mathrm{~A}(\lambda) \mathrm{B}(\lambda)] .
\end{aligned}
$$

Hence $A(\lambda) B(\lambda)$ is also an intuitionistic fuzzy s-normal polynomial matrix.

Definition :3.6

An intuitionistic fuzzy s-unitary polynomial matrix is a polynomial matrix whose coefficient matrices are intuitionistic fuzzy s-unitary matrices.

Theorem:3.7

The following statements are equivalent
(i) $\mathrm{A}(\lambda)$ is an intuitionistic fuzzy s-unitary polynomial matrix.
(ii) $\mathrm{A}^{\mathrm{S}}(\lambda)$ is an intuitionistic fuzzy s- unitary polynomial matrix.
(iii) $\mathrm{hA}(\lambda)$ is an intuitionistic fuzzy s-unitary polynomial matrix, where $\mathrm{h} \in \mathrm{F}$.

Proof:
The proof is similar lines to that of theorem

Theorem:3.8

If $A(\lambda)$ and $B(\lambda)$ are intuitionistic fuzzy s-unitary polynomial matrices, then $A(\lambda) B(\lambda)$ is an intuitionistic fuzzy s-unitary polynomial matrices.

Proof:

The proof is similar lines to that of theorem 2.8.

Theorem:3.9

If $A(\lambda)$ and $B(\lambda)$ are intuitionistic fuzzy s-unitary polynomial matrices, then $B(\lambda) A(\lambda)$ is an intuitionistic fuzzy unitary polynomial matrices.

REFERENCES

[1] Indira.R, Subharani.V, On S-Normal and unitary polynomial matrices, Int. J. of Inno. Tech. And Exp. Engg. vol-5, issue- 3, 2015.
[2] Pal.M, Khan.S and Shyamal.A.K, Intutionistic fuzzy matrices, Notes on Intutionistic Fuzzy Sets, 8(2), 51-62, 2002.
[3] Young Bim Im, Eum Pyo Lee, The determinant of square intutionistic fuzzy matrix, Far East J of Mathematical Sci. 3(5), 789-796, 2001.
[4] Zadeh. L.A, Fuzzy sets, Information and control, vol-8,338-353, 1965.

